Examples
- Examples
- Getting Started
- Agents
- Teams
- Workflows
- Applications
- Streamlit Apps
- Evals
Agent Concepts
- Reasoning
- Multimodal
- RAG
- User Control Flows
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
- Observability
- Miscellaneous
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- XAI
- Vercel
Miscellaneous
Success Criteria
This example shows how to set the success criteria of an agent.
Code
cookbook/agent_concepts/other/success_criteria.py
from agno.agent import Agent
from agno.models.google import Gemini
from agno.tools.thinking import ThinkingTools
puzzle_master = Agent(
model=Gemini(id="gemini-2.0-flash"),
tools=[ThinkingTools(add_instructions=True)],
instructions="You are a puzzle master for small logic puzzles.",
show_tool_calls=False,
markdown=False,
stream_intermediate_steps=False,
success_criteria="The puzzle has been solved correctly with all drinks uniquely assigned.",
)
prompt = """
Create a small logic puzzle:
Three friends—Alice, Bob, and Carol—each choose a different drink from tea, coffee, and milk.
Clues:
1. Alice does not drink tea.
2. The person who drinks coffee is not Carol.
Ask: Who drinks which beverage?
"""
puzzle_master.print_response(prompt, stream=True, show_reasoning=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your API key
export GOOGLE_API_KEY=xxx
3
Install libraries
pip install -U google-generativeai agno
4
Run Agent
python cookbook/agent_concepts/other/success_criteria.py
Was this page helpful?
Assistant
Responses are generated using AI and may contain mistakes.