Examples
- Examples
- Getting Started
- Agents
- Teams
- Workflows
- Applications
- Streamlit Apps
- Evals
Agent Concepts
- Reasoning
- Multimodal
- RAG
- User Control Flows
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
- Observability
- Miscellaneous
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- XAI
- Vercel
Miscellaneous
Agent Extra Metrics
This example shows how to get special token metrics like audio, cached and reasoning tokens.
Code
cookbook/agent_concepts/other/agent_extra_metrics.py
import requests
from agno.agent import Agent
from agno.media import Audio
from agno.models.openai import OpenAIChat
# Fetch the audio file and convert it to a base64 encoded string
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
agent = Agent(
model=OpenAIChat(
id="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "sage", "format": "wav"},
),
markdown=True,
debug_mode=True,
)
agent.print_response(
"What's in these recording?",
audio=[Audio(content=wav_data, format="wav")],
)
# Showing input audio, output audio and total audio tokens metrics
print(f"Input audio tokens: {agent.run_response.metrics['input_audio_tokens']}")
print(f"Output audio tokens: {agent.run_response.metrics['output_audio_tokens']}")
print(f"Audio tokens: {agent.run_response.metrics['audio_tokens']}")
agent = Agent(
model=OpenAIChat(id="o3-mini"),
markdown=True,
telemetry=False,
monitoring=False,
debug_mode=True,
)
agent.print_response(
"Solve the trolley problem. Evaluate multiple ethical frameworks. Include an ASCII diagram of your solution.",
stream=False,
)
# Showing reasoning tokens metrics
print(f"Reasoning tokens: {agent.run_response.metrics['reasoning_tokens']}")
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"), markdown=True, telemetry=False, monitoring=False
)
agent.run("Share a 2 sentence horror story" * 150)
agent.print_response("Share a 2 sentence horror story" * 150)
# Showing cached tokens metrics
print(f"Cached tokens: {agent.run_response.metrics['cached_tokens']}")
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your API key
export OPENAI_API_KEY=xxx
3
Install libraries
pip install -U requests openai agno
4
Run Agent
python cookbook/agent_concepts/other/agent_extra_metrics.py
Was this page helpful?
Assistant
Responses are generated using AI and may contain mistakes.