Examples
- Examples
- Getting Started
- Agents
- Teams
- Workflows
- Applications
- Streamlit Apps
- Evals
Agent Concepts
- Reasoning
- Multimodal
- RAG
- User Control Flows
- Knowledge
- Memory
- Built-in Memory
- Standalone Memory Operations
- Persistent Memory with SQLite
- Custom Memory Creation
- Memory Search
- Agent With Memory
- Agentic Memory
- Agent with Session Summaries
- Multiple Agents Sharing Memory
- Custom Memory
- Multi-User Multi-Session Chat
- Multi-User Multi-Session Chat Concurrent
- Memory References
- Session Summary References
- Mem0 Memory
- DB
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
- Observability
- Miscellaneous
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- XAI
- Vercel
DB
Redis Memory Storage
Code
cookbook/agent_concepts/memory/redis_memory.py
Copy
"""
This example shows how to use the Memory class with Redis storage.
"""
from agno.agent.agent import Agent
from agno.memory.v2.db.redis import RedisMemoryDb
from agno.memory.v2.memory import Memory
from agno.models.openai import OpenAIChat
from agno.storage.redis import RedisStorage
# Create Redis memory database
memory_db = RedisMemoryDb(
prefix="agno_memory", # Prefix for Redis keys to namespace the memories
host="localhost", # Redis host address
port=6379, # Redis port number
)
# Create memory instance with Redis backend
memory = Memory(db=memory_db)
# This will clear any existing memories
memory.clear()
# Session and user identifiers
session_id = "redis_memories"
user_id = "redis_user"
# Create agent with memory and Redis storage
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
memory=memory,
storage=RedisStorage(prefix="agno_test", host="localhost", port=6379),
enable_user_memories=True,
enable_session_summaries=True,
)
# First interaction - introducing personal information
agent.print_response(
"My name is John Doe and I like to hike in the mountains on weekends.",
stream=True,
user_id=user_id,
session_id=session_id,
)
# Second interaction - testing if memory was stored
agent.print_response(
"What are my hobbies?",
stream=True,
user_id=user_id,
session_id=session_id
)
# Display the memories stored in Redis
memories = memory.get_user_memories(user_id=user_id)
print("Memories stored in Redis:")
for i, m in enumerate(memories):
print(f"{i}: {m.memory}")
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
Copy
python3 -m venv .venv
source .venv/bin/activate
2
Set environment variables
Copy
export OPENAI_API_KEY=xxx
3
Install libraries
Copy
pip install -U agno openai redis
4
Run Redis
Copy
docker run --name my-redis -p 6379:6379 -d redis
5
Run Example
Copy
python cookbook/agent_concepts/memory/redis_memory.py
Was this page helpful?
Assistant
Responses are generated using AI and may contain mistakes.