Memory
Multi-User Multi-Session Chat Concurrent
Examples
- Introduction
- Getting Started
- Agents
- Teams
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- xAI
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
Memory
Multi-User Multi-Session Chat Concurrent
This example shows how to run a multi-user, multi-session chat concurrently. In this example, we have 3 users and 4 sessions:
- User 1 has 2 sessions.
- User 2 has 1 session.
- User 3 has 1 session.
Code
cookbook/agent_concepts/memory/12_multi_user_multi_session_chat_concurrent.py
import asyncio
from agno.agent.agent import Agent
from agno.memory.v2.db.sqlite import SqliteMemoryDb
from agno.memory.v2.memory import Memory
from agno.models.anthropic.claude import Claude
from agno.models.google.gemini import Gemini
from agno.storage.sqlite import SqliteStorage
agent_storage = SqliteStorage(
table_name="agent_sessions", db_file="tmp/persistent_memory.db"
)
memory_db = SqliteMemoryDb(table_name="memory", db_file="tmp/memory.db")
memory = Memory(model=Claude(id="claude-3-5-sonnet-20241022"), db=memory_db)
# Reset the memory for this example
memory.clear()
user_1_id = "user_1@example.com"
user_2_id = "user_2@example.com"
user_3_id = "user_3@example.com"
user_1_session_1_id = "user_1_session_1"
user_1_session_2_id = "user_1_session_2"
user_2_session_1_id = "user_2_session_1"
user_3_session_1_id = "user_3_session_1"
chat_agent = Agent(
model=Gemini(id="gemini-2.0-flash-exp"),
storage=agent_storage,
memory=memory,
enable_user_memories=True,
)
async def user_1_conversation():
"""Handle conversation with user 1 across multiple sessions"""
# User 1 - Session 1
await chat_agent.arun(
"My name is Mark Gonzales and I like anime and video games.",
user_id=user_1_id,
session_id=user_1_session_1_id,
)
await chat_agent.arun(
"I also enjoy reading manga and playing video games.",
user_id=user_1_id,
session_id=user_1_session_1_id,
)
# User 1 - Session 2
await chat_agent.arun(
"I'm going to the movies tonight.",
user_id=user_1_id,
session_id=user_1_session_2_id,
)
# Continue the conversation in session 1
await chat_agent.arun(
"What do you suggest I do this weekend?",
user_id=user_1_id,
session_id=user_1_session_1_id,
)
print("User 1 Done")
async def user_2_conversation():
"""Handle conversation with user 2"""
await chat_agent.arun(
"Hi my name is John Doe.", user_id=user_2_id, session_id=user_2_session_1_id
)
await chat_agent.arun(
"I'm planning to hike this weekend.",
user_id=user_2_id,
session_id=user_2_session_1_id,
)
print("User 2 Done")
async def user_3_conversation():
"""Handle conversation with user 3"""
await chat_agent.arun(
"Hi my name is Jane Smith.", user_id=user_3_id, session_id=user_3_session_1_id
)
await chat_agent.arun(
"I'm going to the gym tomorrow.",
user_id=user_3_id,
session_id=user_3_session_1_id,
)
print("User 3 Done")
async def run_concurrent_chat_agent():
"""Run all user conversations concurrently"""
await asyncio.gather(
user_1_conversation(), user_2_conversation(), user_3_conversation()
)
if __name__ == "__main__":
# Run all conversations concurrently
asyncio.run(run_concurrent_chat_agent())
user_1_memories = memory.get_user_memories(user_id=user_1_id)
print("User 1's memories:")
for i, m in enumerate(user_1_memories):
print(f"{i}: {m.memory}")
user_2_memories = memory.get_user_memories(user_id=user_2_id)
print("User 2's memories:")
for i, m in enumerate(user_2_memories):
print(f"{i}: {m.memory}")
user_3_memories = memory.get_user_memories(user_id=user_3_id)
print("User 3's memories:")
for i, m in enumerate(user_3_memories):
print(f"{i}: {m.memory}")
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Install libraries
pip install -U agno google-generativeai anthropic
3
Set your API keys
export GOOGLE_API_KEY=xxx
4
Run Example
python cookbook/agent_concepts/memory/12_multi_user_multi_session_chat_concurrent.py
Was this page helpful?