Skip to main content
The PPTX Reader with asynchronous processing allows you to read and extract text content from PowerPoint (.pptx) files with better performance for concurrent operations.

Code

pptx_reader_async.py
import asyncio

from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.pptx_reader import PPTXReader
from agno.vectordb.pgvector import PgVector

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

knowledge = Knowledge(
    # Table name: ai.pptx_documents
    vector_db=PgVector(
        table_name="pptx_documents",
        db_url=db_url,
    ),
)

# Create an agent with the knowledge
agent = Agent(
    knowledge=knowledge,
    search_knowledge=True,
)

def main():
    # Load the knowledge
    asyncio.run(
        knowledge.add_content_async(
            path="data/pptx_files",
            reader=PPTXReader(),
        )
    )

    # Create and use the agent
    asyncio.run(
        agent.aprint_response(
            "What can you tell me about the content in these PowerPoint presentations?", markdown=True
        )
    )

if __name__ == "__main__":
    main()

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U python-pptx sqlalchemy psycopg pgvector agno
3

Run PgVector

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agno/pgvector:16
4

Run Agent

python pptx_reader_async.py

PPTX Reader Params

ParameterTypeDefaultDescription
fileUnion[Path, IO[Any]]RequiredPath to PPTX file or file-like object containing a PowerPoint presentation
nameOptional[str]NoneOptional name for the document
chunkboolTrueWhether to chunk the document
chunk_sizeint5000Size of chunks when chunking is enabled
chunking_strategyOptional[ChunkingStrategy]DocumentChunking()Strategy for chunking the document
encodingOptional[str]NoneText encoding to use for reading