Code

cookbook/knowledge/filters/agentic_filtering.py
import asyncio
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.utils.media import (
    SampleDataFileExtension,
    download_knowledge_filters_sample_data,
)
from agno.vectordb.lancedb import LanceDb

# Download all sample sales files and get their paths
downloaded_csv_paths = download_knowledge_filters_sample_data(
    num_files=4, file_extension=SampleDataFileExtension.CSV
)

# Initialize LanceDB
# By default, it stores data in /tmp/lancedb
vector_db = LanceDb(
    table_name="recipes",
    uri="tmp/lancedb",  # You can change this path to store data elsewhere
)

# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------

knowledge = Knowledge(
    name="CSV Knowledge Base",
    description="A knowledge base for CSV files",
    vector_db=vector_db,
)

# Load all documents into the vector database
asyncio.run(knowledge.add_contents_async(
    [
        {
            "path": downloaded_csv_paths[0],
            "metadata": {
                "data_type": "sales",
                "quarter": "Q1",
                "year": 2024,
                "region": "north_america",
                "currency": "USD",
            },
        },
        {
            "path": downloaded_csv_paths[1],
            "metadata": {
                "data_type": "sales",
                "year": 2024,
                "region": "europe",
                "currency": "EUR",
            },
        },
        {
            "path": downloaded_csv_paths[2],
            "metadata": {
                "data_type": "survey",
                "survey_type": "customer_satisfaction",
                "year": 2024,
                "target_demographic": "mixed",
            },
        },
        {
            "path": downloaded_csv_paths[3],
            "metadata": {
                "data_type": "financial",
                "sector": "technology",
                "year": 2024,
                "report_type": "quarterly_earnings",
            },
        },
    ]
))
# Step 2: Query the knowledge base with Agent using filters from query automatically
# -----------------------------------------------------------------------------------

# Enable agentic filtering
agent = Agent(
    knowledge=knowledge,
    search_knowledge=True,
    enable_agentic_knowledge_filters=True,
)

agent.print_response(
    "Tell me about revenue performance and top selling products in the region north_america and data_type sales",
    markdown=True,
)

Usage

1

Install libraries

pip install -U agno lancedb openai
2

Set environment variables

export OPENAI_API_KEY=xxx
3

Run the example

python cookbook/knowledge/filters/agentic_filtering.py