Fixed size chunking is a method of splitting documents into smaller chunks of a specified size, with optional overlap between chunks. This is useful when you want to process large documents in smaller, manageable pieces.

Code

import asyncio
from agno.agent import Agent
from agno.knowledge.chunking.fixed import FixedSizeChunking
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.pdf_reader import PDFReader
from agno.vectordb.pgvector import PgVector

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

knowledge = Knowledge(
    vector_db=PgVector(table_name="recipes_fixed_size_chunking", db_url=db_url),
)

asyncio.run(knowledge.add_content_async(
    url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
    reader=PDFReader(
        name="Fixed Size Chunking Reader",
        chunking_strategy=FixedSizeChunking(),
    ),
))
agent = Agent(
    knowledge=knowledge,
    search_knowledge=True,
)

agent.print_response("How to make Thai curry?", markdown=True)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U sqlalchemy psycopg pgvector agno
3

Run PgVector

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agno/pgvector:16
4

Run Agent

python cookbook/knowledge/chunking/fixed_size_chunking.py

Fixed Size Chunking Params

ParameterTypeDefaultDescription
chunk_sizeint5000The maximum size of each chunk.
overlapint0The number of characters to overlap between chunks.