Skip to main content
Agno supports using PostgreSQL asynchronously, with the AsyncPostgresDb class.

Usage

Run PgVector

Install docker desktop and run PgVector on port 5532 using:
docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agnohq/pgvector:16
async_postgres_for_workflow.py
import asyncio

from agno.agent import Agent
from agno.db.async_postgres.async_postgres import AsyncPostgresDb
from agno.models.openai import OpenAIChat
from agno.team import Team
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.hackernews import HackerNewsTools
from agno.workflow.step import Step
from agno.workflow.workflow import Workflow

db_url = "postgresql+psycopg_async://ai:ai@localhost:5532/ai"
db = AsyncPostgresDb(db_url=db_url)

# Define agents
hackernews_agent = Agent(
    name="Hackernews Agent",
    model=OpenAIChat(id="gpt-4o-mini"),
    tools=[HackerNewsTools()],
    role="Extract key insights and content from Hackernews posts",
)
web_agent = Agent(
    name="Web Agent",
    model=OpenAIChat(id="gpt-4o-mini"),
    tools=[DuckDuckGoTools()],
    role="Search the web for the latest news and trends",
)

# Define research team for complex analysis
research_team = Team(
    name="Research Team",
    members=[hackernews_agent, web_agent],
    instructions="Research tech topics from Hackernews and the web",
)

content_planner = Agent(
    name="Content Planner",
    model=OpenAIChat(id="gpt-4o"),
    instructions=[
        "Plan a content schedule over 4 weeks for the provided topic and research content",
        "Ensure that I have posts for 3 posts per week",
    ],
)

# Define steps
research_step = Step(
    name="Research Step",
    team=research_team,
)

content_planning_step = Step(
    name="Content Planning Step",
    agent=content_planner,
)

# Create and use workflow
if __name__ == "__main__":
    content_creation_workflow = Workflow(
        name="Content Creation Workflow",
        description="Automated content creation from blog posts to social media",
        db=db,
        steps=[research_step, content_planning_step],
    )
    asyncio.run(
        content_creation_workflow.aprint_response(
            input="AI trends in 2024",
            markdown=True,
        )
    )

Params

ParameterTypeDefaultDescription
db_idOptional[str]-The ID of the database instance. UUID by default.
db_urlOptional[str]-The database URL to connect to.
db_engineOptional[AsyncEngine]-The SQLAlchemy asyncdatabase engine to use.
db_schemaOptional[str]-The database schema to use.
session_tableOptional[str]-Name of the table to store Agent, Team and Workflow sessions.
memory_tableOptional[str]-Name of the table to store memories.
metrics_tableOptional[str]-Name of the table to store metrics.
eval_tableOptional[str]-Name of the table to store evaluation runs data.
knowledge_tableOptional[str]-Name of the table to store knowledge content.

Developer Resources

I