This example demonstrates traditional RAG implementation using PgVector database with OpenAI embeddings, where knowledge context is automatically added to prompts without search functionality.

Code

cookbook/agents/rag/traditional_rag_pgvector.py
from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.vectordb.pgvector import PgVector, SearchType

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

knowledge = Knowledge(
    # Use PgVector as the vector database and store embeddings in the `ai.recipes` table
    vector_db=PgVector(
        table_name="recipes",
        db_url=db_url,
        search_type=SearchType.hybrid,
        embedder=OpenAIEmbedder(id="text-embedding-3-small"),
    ),
)

knowledge.add_content(
    url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"
)

agent = Agent(
    model=OpenAIChat(id="gpt-5-mini"),
    knowledge=knowledge,
    # Enable RAG by adding context from the `knowledge` to the user prompt.
    add_knowledge_to_context=True,
    # Set as False because Agents default to `search_knowledge=True`
    search_knowledge=False,
    markdown=True,
)
agent.print_response(
    "How do I make chicken and galangal in coconut milk soup", stream=True
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U agno openai sqlalchemy psycopg pgvector
3

Setup PgVector

# Start PostgreSQL container with pgvector
./cookbook/run_pgvector.sh
4

Run Agent

python cookbook/agents/rag/traditional_rag_pgvector.py