This example demonstrates how to create an agent that can handle multi-turn audio conversations, maintaining context between audio interactions while generating both text and audio responses.

Code

examples/concepts/agent/agents/multimodal/audio_multi_turn.py
from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.models.openai import OpenAIChat
from agno.utils.audio import write_audio_to_file
from rich.pretty import pprint

agent = Agent(
    model=OpenAIChat(
        id="gpt-5-mini-audio-preview",
        modalities=["text", "audio"],
        audio={"voice": "sage", "format": "wav"},
    ),
    add_history_to_context=True,
    db=SqliteDb(
        session_table="audio_multi_turn_sessions", db_file="tmp/audio_multi_turn.db"
    ),
)

run_response = agent.run("Is a golden retriever a good family dog?")
pprint(run_response.content)
if run_response.response_audio is not None:
    write_audio_to_file(
        audio=run_response.response_audio.content, filename="tmp/answer_1.wav"
    )

run_response = agent.run("What breed are we talking about?")
pprint(run_response.content)
if run_response.response_audio is not None:
    write_audio_to_file(
        audio=run_response.response_audio.content, filename="tmp/answer_2.wav"
    )

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U openai agno
3

Run Agent

python examples/concepts/agent/agents/multimodal/audio_multi_turn.py