Skip to main content
This example demonstrates the difference between a regular agent and a reasoning agent when solving mathematical problems, showcasing how reasoning mode provides more detailed thought processes.

Code

reasoning.py
import asyncio

from agno.agent import Agent
from agno.models.openai import OpenAIChat

task = "9.11 and 9.9 -- which is bigger?"

regular_agent = Agent(model=OpenAIChat(id="gpt-5-mini"), markdown=True)
reasoning_agent = Agent(
    model=OpenAIChat(id="gpt-5-mini"),
    reasoning=True,
    markdown=True,
)

asyncio.run(regular_agent.aprint_response(task, stream=True))
asyncio.run(
    reasoning_agent.aprint_response(task, stream=True, show_full_reasoning=True)
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U agno openai
3

Export your OpenAI API key

  export OPENAI_API_KEY="your_openai_api_key_here"
4

Create a Python file

Create a Python file and add the above code.
touch reasoning.py
5

Run Agent

python reasoning.py
6

Find All Cookbooks

Explore all the available cookbooks in the Agno repository. Click the link below to view the code on GitHub:Agno Cookbooks on GitHub
I