Copy
Ask AI
"""
Sequential Workflow - Stock Research Pipeline
==============================================
This example shows how to create a workflow with sequential steps.
Each step is handled by a specialized agent, and outputs flow to the next step.
Different from Teams (agents collaborate dynamically), Workflows give you
explicit control over execution order and data flow.
Key concepts:
- Workflow: Orchestrates a sequence of steps
- Step: Wraps an agent with a specific task
- Steps execute in order, each building on the previous
Example prompts to try:
- "Analyze NVDA"
- "Research Tesla for investment"
- "Give me a report on Apple"
"""
from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.models.google import Gemini
from agno.tools.yfinance import YFinanceTools
from agno.workflow import Step, Workflow
# ---------------------------------------------------------------------------
# Storage Configuration
# ---------------------------------------------------------------------------
workflow_db = SqliteDb(db_file="tmp/agents.db")
# ---------------------------------------------------------------------------
# Step 1: Data Gatherer — Fetches raw market data
# ---------------------------------------------------------------------------
data_agent = Agent(
name="Data Gatherer",
model=Gemini(id="gemini-3-flash-preview"),
tools=[YFinanceTools()],
instructions="""\
You are a data gathering agent. Your job is to fetch comprehensive market data.
For the requested stock, gather:
- Current price and daily change
- Market cap and volume
- P/E ratio, EPS, and other key ratios
- 52-week high and low
- Recent price trends
Present the raw data clearly. Don't analyze — just gather and organize.\
""",
db=workflow_db,
add_datetime_to_context=True,
add_history_to_context=True,
num_history_runs=5,
)
data_step = Step(
name="Data Gathering",
agent=data_agent,
description="Fetch comprehensive market data for the stock",
)
# ---------------------------------------------------------------------------
# Step 2: Analyst — Interprets the data
# ---------------------------------------------------------------------------
analyst_agent = Agent(
name="Analyst",
model=Gemini(id="gemini-3-flash-preview"),
instructions="""\
You are a financial analyst. You receive raw market data from the data team.
Your job is to:
- Interpret the key metrics (is the P/E high or low for this sector?)
- Identify strengths and weaknesses
- Note any red flags or positive signals
- Compare to typical industry benchmarks
Provide analysis, not recommendations. Be objective and data-driven.\
""",
db=workflow_db,
add_datetime_to_context=True,
add_history_to_context=True,
num_history_runs=5,
)
analysis_step = Step(
name="Analysis",
agent=analyst_agent,
description="Analyze the market data and identify key insights",
)
# ---------------------------------------------------------------------------
# Step 3: Report Writer — Produces final output
# ---------------------------------------------------------------------------
report_agent = Agent(
name="Report Writer",
model=Gemini(id="gemini-3-flash-preview"),
instructions="""\
You are a report writer. You receive analysis from the research team.
Your job is to:
- Synthesize the analysis into a clear investment brief
- Lead with a one-line summary
- Include a recommendation (Buy/Hold/Sell) with rationale
- Keep it concise — max 200 words
- End with key metrics in a small table
Write for a busy investor who wants the bottom line fast.\
""",
db=workflow_db,
add_datetime_to_context=True,
add_history_to_context=True,
num_history_runs=5,
markdown=True,
)
report_step = Step(
name="Report Writing",
agent=report_agent,
description="Produce a concise investment brief",
)
# ---------------------------------------------------------------------------
# Create the Workflow
# ---------------------------------------------------------------------------
sequential_workflow = Workflow(
name="Sequential Workflow",
description="Three-step research pipeline: Data → Analysis → Report",
steps=[
data_step, # Step 1: Gather data
analysis_step, # Step 2: Analyze data
report_step, # Step 3: Write report
],
)
# ---------------------------------------------------------------------------
# Run the Workflow
# ---------------------------------------------------------------------------
if __name__ == "__main__":
sequential_workflow.print_response(
"Analyze NVIDIA (NVDA) for investment",
stream=True,
)
# ---------------------------------------------------------------------------
# More Examples
# ---------------------------------------------------------------------------
"""
Workflow vs Team:
- Workflow: Explicit step order, predictable execution, clear data flow
- Team: Dynamic collaboration, leader decides who does what
Use Workflow when:
- Steps must happen in a specific order
- Each step has a clear, specialized role
- You want predictable, repeatable execution
- Output from step N feeds into step N+1
Use Team when:
- Agents need to collaborate dynamically
- The leader should decide who to involve
- Tasks benefit from back-and-forth discussion
Advanced workflow features (not shown here):
- Parallel: Run steps concurrently
- Condition: Run steps only if criteria met
- Loop: Repeat steps until condition met
- Router: Dynamically select which step to run
"""
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/00_quickstart
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python sequential_workflow.py