Execute workflows as non-blocking background tasks by passing background=True to Workflow.arun(). This returns a WorkflowRunOutput object with a run_id for polling the workflow status until completion.
Background execution requires async workflows using .arun(). Poll for results using workflow.get_run(run_id) and check completion status with .has_completed().Ideal for long-running operations like large-scale data processing, multi-step research, or batch operations that shouldn’t block your main application thread.

Example

import asyncio

from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.models.openai import OpenAIChat
from agno.team import Team
from agno.tools.googlesearch import GoogleSearchTools
from agno.tools.hackernews import HackerNewsTools
from agno.utils.pprint import pprint_run_response
from agno.workflow.step import Step
from agno.workflow.workflow import Workflow

# Define agents
hackernews_agent = Agent(
    name="Hackernews Agent",
    model=OpenAIChat(id="gpt-5-mini"),
    tools=[HackerNewsTools()],
    role="Extract key insights and content from Hackernews posts",
)
web_agent = Agent(
    name="Web Agent",
    model=OpenAIChat(id="gpt-5-mini"),
    tools=[GoogleSearchTools()],
    role="Search the web for the latest news and trends",
)

# Define research team for complex analysis
research_team = Team(
    name="Research Team",
    members=[hackernews_agent, web_agent],
    instructions="Research tech topics from Hackernews and the web",
)

content_planner = Agent(
    name="Content Planner",
    model=OpenAIChat(id="gpt-5-mini"),
    instructions=[
        "Plan a content schedule over 4 weeks for the provided topic and research content",
        "Ensure that I have posts for 3 posts per week",
    ],
)

# Define steps
research_step = Step(
    name="Research Step",
    team=research_team,
)

content_planning_step = Step(
    name="Content Planning Step",
    agent=content_planner,
)

content_creation_workflow = Workflow(
    name="Content Creation Workflow",
    description="Automated content creation from blog posts to social media",
    db=SqliteDb(
        session_table="workflow_session",
        db_file="tmp/workflow.db",
    ),
    steps=[research_step, content_planning_step],
)


async def main():
    print("🚀 Starting Async Background Workflow Test")

    # Start background execution (async)
    bg_response = await content_creation_workflow.arun(
        input="AI trends in 2024", background=True
    )
    print(f"✅ Initial Response: {bg_response.status} - {bg_response.content}")
    print(f"📋 Run ID: {bg_response.run_id}")

    # Poll every 5 seconds until completion
    poll_count = 0

    while True:
        poll_count += 1
        print(f"\n🔍 Poll #{poll_count} (every 5s)")

        result = content_creation_workflow.get_run(bg_response.run_id)

        if result is None:
            print("⏳ Workflow not found yet, still waiting...")
            if poll_count > 50:
                print(f"⏰ Timeout after {poll_count} attempts")
                break
            await asyncio.sleep(5)
            continue

        if result.has_completed():
            break

        if poll_count > 200:
            print(f"⏰ Timeout after {poll_count} attempts")
            break

        await asyncio.sleep(5)

    final_result = content_creation_workflow.get_run(bg_response.run_id)

    print("\n📊 Final Result:")
    print("=" * 50)
    pprint_run_response(final_result, markdown=True)


if __name__ == "__main__":
    asyncio.run(main())
You can also use websockets for background workflows. See the Workflow Websocket example.

Developer Resources