from agno.agent import Agent from agno.db.postgres import PostgresDb from agno.knowledge.knowledge import Knowledge from agno.vectordb.pgvector import PgVector contents_db = PostgresDb( db_url="postgresql+psycopg://ai:ai@localhost:5532/ai", knowledge_table="knowledge_contents", ) # Create Knowledge Instance knowledge = Knowledge( name="Basic SDK Knowledge Base", description="Agno 2.0 Knowledge Implementation", vector_db=PgVector( table_name="vectors", db_url="postgresql+psycopg://ai:ai@localhost:5532/ai" ), ) knowledge.add_content( name="CV", path="cookbook/knowledge/testing_resources/cv_1.pdf", metadata={"user_tag": "Engineering Candidates"}, ) agent = Agent( name="My Agent", description="Agno 2.0 Agent Implementation", knowledge=knowledge, search_knowledge=True, debug_mode=True, ) agent.print_response( "What skills does Jordan Mitchell have?", markdown=True, )
Install libraries
pip install -U agno sqlalchemy psycopg pgvector openai
Set environment variables
export OPENAI_API_KEY=xxx
Run PgVector
docker run -d \ -e POSTGRES_DB=ai \ -e POSTGRES_USER=ai \ -e POSTGRES_PASSWORD=ai \ -e PGDATA=/var/lib/postgresql/data/pgdata \ -v pgvolume:/var/lib/postgresql/data \ -p 5532:5432 \ --name pgvector \ agno/pgvector:16
Run the example
python cookbook/knowledge/basic_operations/13_sync.py
Was this page helpful?