output_schema to ensure team responses are structured as Pydantic models. This provides type-safe, validated output.
Code
pydantic_model_output.py
Copy
Ask AI
from agno.agent import Agent
from agno.models.openai import OpenAIResponses
from agno.team import Team
from agno.tools.hackernews import HackerNewsTools
from agno.tools.yfinance import YFinanceTools
from pydantic import BaseModel
class StockAnalysis(BaseModel):
symbol: str
company_name: str
analysis: str
class NewsAnalysis(BaseModel):
topic: str
summary: str
class ResearchReport(BaseModel):
title: str
stock_analysis: str
news_summary: str
news_agent = Agent(
name="News Agent",
model=OpenAIResponses(id="gpt-5.2"),
tools=[HackerNewsTools()],
role="Research tech news from HackerNews",
output_schema=NewsAnalysis,
)
stock_agent = Agent(
name="Stock Agent",
model=OpenAIResponses(id="gpt-5.2"),
tools=[YFinanceTools()],
role="Analyze stock prices and financial data",
output_schema=StockAnalysis,
)
team = Team(
name="Research Team",
model=OpenAIResponses(id="gpt-5.2"),
members=[news_agent, stock_agent],
output_schema=ResearchReport,
markdown=True,
)
response = team.run("Research NVIDIA - get stock data and recent news")
print(f"Title: {response.content.title}")
print(f"Stock Analysis: {response.content.stock_analysis}")
print(f"News Summary: {response.content.news_summary}")
Usage
1
Set up your virtual environment
Copy
Ask AI
uv venv --python 3.12
source .venv/bin/activate
2
Install dependencies
Copy
Ask AI
uv pip install -U agno openai yfinance
3
Export your OpenAI API key
Copy
Ask AI
export OPENAI_API_KEY="your_openai_api_key_here"
4
Run Team
Copy
Ask AI
python pydantic_model_output.py