VectorDbs
Weaviate Agent Knowledge
Concepts
- Agents
- Teams
- Models
- Tools
- Reasoning
- Knowledge
- Chunking
- VectorDbs
- Storage
- Embeddings
- Workflows
Other
- Agent UI
VectorDbs
Weaviate Agent Knowledge
Follow steps mentioned in Weaviate setup guide to setup Weaviate.
Setup
Install weaviate packages
pip install weaviate-client
Run weaviate
docker run -d \
-p 8080:8080 \
-p 50051:50051 \
--name weaviate \
cr.weaviate.io/semitechnologies/weaviate:1.28.4
or
./cookbook/scripts/run_weaviate.sh
Example
agent_with_knowledge.py
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.search import SearchType
from agno.vectordb.weaviate import Distance, VectorIndex, Weaviate
vector_db = Weaviate(
collection="recipes",
search_type=SearchType.hybrid,
vector_index=VectorIndex.HNSW,
distance=Distance.COSINE,
local=True, # Set to False if using Weaviate Cloud and True if using local instance
)
# Create knowledge base
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
knowledge_base.load(recreate=False) # Comment out after first run
# Create and use the agent
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
Developer Resources
- View Cookbook
On this page