The CSVUrlKnowledgeBase reads CSVs from urls, converts them into vector embeddings and loads them to a vector database.
Usage
from agno.knowledge.csv_url import CSVUrlKnowledgeBase
from agno.vectordb.pgvector import PgVector
knowledge_base = CSVUrlKnowledgeBase(
urls=["csv_url"],
# Table name: ai.csv_documents
vector_db=PgVector(
table_name="csv_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
Then use the knowledge_base
with an Agent:
from agno.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("Ask me about something from the knowledge base")
CSVUrlKnowledgeBase also supports async loading.
pip install qdrant-client
We are using a local Qdrant database for this example. Make sure it’s running
import asyncio
from agno.agent import Agent
from agno.knowledge.csv_url import CSVUrlKnowledgeBase
from agno.vectordb.qdrant import Qdrant
COLLECTION_NAME = "csv-reader"
vector_db = Qdrant(collection=COLLECTION_NAME, url="http://localhost:6333")
knowledge_base = CSVUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/demo_data/IMDB-Movie-Data.csv"],
vector_db=vector_db,
num_documents=5, # Number of documents to return on search
)
# Initialize the Agent with the knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
if __name__ == "__main__":
# Comment out after first run
asyncio.run(knowledge_base.aload(recreate=False))
# Create and use the agent
asyncio.run(
agent.aprint_response("What genre of movies are present here?", markdown=True)
)
Params
Parameter | Type | Default | Description |
---|
urls | List[str] | - | URLs for PDF files. |
reader | CSVUrlReader | CSVUrlReader() | A CSVUrlReader that reads the CSV file from the URL and converts it into Documents for the vector database |
CSVUrlKnowledgeBase
is a subclass of the AgentKnowledge class and has access to the same params.
Developer Resources