This example demonstrates how to use a sequence of functions and agents in a workflow.
This example demonstrates Workflows 2.0 combining custom functions with agents and teams
in a sequential execution pattern. This shows how to mix different component types for
maximum flexibility in your workflow design.When to use: Linear processes where you need custom data preprocessing between AI agents,
or when combining multiple component types (functions, agents, teams) in sequence.
sequence_of_functions_and_agents.py
Copy
Ask AI
from textwrap import dedentfrom agno.agent import Agentfrom agno.models.openai import OpenAIChatfrom agno.storage.sqlite import SqliteStoragefrom agno.team import Teamfrom agno.tools.duckduckgo import DuckDuckGoToolsfrom agno.tools.hackernews import HackerNewsToolsfrom agno.workflow.v2.types import StepInput, StepOutputfrom agno.workflow.v2.workflow import Workflow# Define agentsweb_agent = Agent( name="Web Agent", model=OpenAIChat(id="gpt-4o-mini"), tools=[DuckDuckGoTools()], role="Search the web for the latest news and trends",)hackernews_agent = Agent( name="Hackernews Agent", model=OpenAIChat(id="gpt-4o-mini"), tools=[HackerNewsTools()], role="Extract key insights and content from Hackernews posts",)writer_agent = Agent( name="Writer Agent", model=OpenAIChat(id="gpt-4o-mini"), instructions="Write a blog post on the topic",)def prepare_input_for_web_search(step_input: StepInput) -> StepOutput: topic = step_input.message return StepOutput( content=dedent(f"""\ I'm writing a blog post on the topic <topic> {topic} </topic> Search the web for atleast 10 articles\ """) )def prepare_input_for_writer(step_input: StepInput) -> StepOutput: topic = step_input.message research_team_output = step_input.previous_step_content return StepOutput( content=dedent(f"""\ I'm writing a blog post on the topic: <topic> {topic} </topic> Here is information from the web: <research_results> {research_team_output} <research_results>\ """) )# Define research team for complex analysisresearch_team = Team( name="Research Team", mode="coordinate", members=[hackernews_agent, web_agent], instructions="Research tech topics from Hackernews and the web",)# Create and use workflowif __name__ == "__main__": content_creation_workflow = Workflow( name="Blog Post Workflow", description="Automated blog post creation from Hackernews and the web", storage=SqliteStorage( table_name="workflow_v2", db_file="tmp/workflow_v2.db", mode="workflow_v2", ), steps=[ prepare_input_for_web_search, research_team, prepare_input_for_writer, writer_agent, ], ) content_creation_workflow.print_response( message="AI trends in 2024", markdown=True, )
This was a synchronous non-streaming example of this pattern. To checkout async and streaming versions, see the cookbooks-