Skip to main content
This example shows how to connect a local GibsonAI MCP to Agno agent.
"""GibsonAI MCP Server - Create and manage databases with prompts

This example shows how to connect a local GibsonAI MCP to Agno agent.
You can instantly generate, modify database schemas
and chat with your relational database using natural language.
From prompt to a serverless database (MySQL, PostgresQL, etc.), auto-generated REST APIs for your data.

Example prompts to try:
- "Create a new GibsonAI project for my e-commerce app"
- "Show me the current schema for my project"
- "Add a 'products' table with name, price, and description fields"
- "Create a 'users' table with authentication fields"
- "Deploy my schema changes to production"

How to setup and run:

1. Install [UV](https://docs.astral.sh/uv/) package manager.
2. Install the GibsonAI CLI:
    ```bash
    uvx --from gibson-cli@latest gibson auth login
    ```
3. Install the required dependencies:
    ```bash
    uv pip install agno mcp openai
    ```
4. Export your API key:
    ```bash
    export OPENAI_API_KEY="your_openai_api_key"
    ```
5. Run the GibsonAI agent by running this file.
6. Check created database and schema on GibsonAI dashboard: https://app.gibsonai.com

This logs you into the [GibsonAI CLI](https://docs.gibsonai.com/reference/cli-quickstart)
so you can access all the features directly from your agent.

"""

import asyncio
from textwrap import dedent

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.mcp import MCPTools

# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------


async def run_gibsonai_agent(message: str):
    """Run the GibsonAI agent with the given message."""
    mcp_tools = MCPTools(
        "uvx --from gibson-cli@latest gibson mcp run",
        timeout_seconds=300,  # Extended timeout for GibsonAI operations
    )

    # Connect to the MCP server
    await mcp_tools.connect()

    agent = Agent(
        name="GibsonAIAgent",
        model=OpenAIChat(id="gpt-4o"),
        tools=[mcp_tools],
        description="Agent for managing database projects and schemas",
        instructions=dedent("""\
            You are a GibsonAI database assistant. Help users manage their database projects and schemas.

            Your capabilities include:
            - Creating new GibsonAI projects
            - Managing database schemas (tables, columns, relationships)
            - Deploying schema changes to hosted databases
            - Querying database schemas and data
            - Providing insights about database structure and best practices
        """),
        markdown=True,
    )

    # Run the agent
    await agent.aprint_response(message, stream=True)

    # Close the MCP connection
    await mcp_tools.close()


# Example usage
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------

if __name__ == "__main__":
    asyncio.run(
        run_gibsonai_agent(
            """
            Create a database for blog posts platform with users and posts tables.
            You can decide the schema of the tables without double checking with me.
            """
        )
    )

Run the Example

# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/91_tools/mcp

# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate

# Export relevant API keys
export OPENAI_API_KEY="***"

python gibsonai.py