Skip to main content
"""
Capture Reasoning Content Knowledge Tools
=========================================

Demonstrates this reasoning cookbook example.
"""

import asyncio
from textwrap import dedent

from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.tools.knowledge import KnowledgeTools
from agno.vectordb.lancedb import LanceDb, SearchType


# ---------------------------------------------------------------------------
# Create Example
# ---------------------------------------------------------------------------
def run_example() -> None:
    # Create a knowledge containing information from a URL
    print("Setting up URL knowledge...")
    agno_docs = Knowledge(
        # Use LanceDB as the vector database
        vector_db=LanceDb(
            uri="tmp/lancedb",
            table_name="cookbook_knowledge_tools",
            search_type=SearchType.hybrid,
            embedder=OpenAIEmbedder(id="text-embedding-3-small"),
        ),
    )
    # Add content to the knowledge
    asyncio.run(agno_docs.ainsert(url="https://www.paulgraham.com/read.html"))
    print("Knowledge ready.")

    print("\n=== Example 1: Using KnowledgeTools in non-streaming mode ===\n")

    # Create agent with KnowledgeTools
    agent = Agent(
        model=OpenAIChat(id="gpt-4o"),
        tools=[
            KnowledgeTools(
                knowledge=agno_docs,
                enable_think=True,
                enable_search=True,
                enable_analyze=True,
                add_instructions=True,
            )
        ],
        instructions=dedent("""\
            You are an expert problem-solving assistant with strong analytical skills!         Use the knowledge tools to organize your thoughts, search for information,
            and analyze results step-by-step.
            \
        """),
        markdown=True,
    )

    # Run the agent (non-streaming) using agent.run() to get the response
    print("Running with KnowledgeTools (non-streaming)...")
    response = agent.run(
        "What does Paul Graham explain here with respect to need to read?", stream=False
    )

    # Check reasoning_content from the response
    print("\n--- reasoning_content from response ---")
    if hasattr(response, "reasoning_content") and response.reasoning_content:
        print("[OK] reasoning_content FOUND in non-streaming response")
        print(f"   Length: {len(response.reasoning_content)} characters")
        print("\n=== reasoning_content preview (non-streaming) ===")
        preview = response.reasoning_content[:1000]
        if len(response.reasoning_content) > 1000:
            preview += "..."
        print(preview)
    else:
        print("[NOT FOUND] reasoning_content NOT FOUND in non-streaming response")

    print("\n\n=== Example 2: Using KnowledgeTools in streaming mode ===\n")

    # Create a fresh agent for streaming
    streaming_agent = Agent(
        model=OpenAIChat(id="gpt-4o"),
        tools=[
            KnowledgeTools(
                knowledge=agno_docs,
                enable_think=True,
                enable_search=True,
                enable_analyze=True,
                add_instructions=True,
            )
        ],
        instructions=dedent("""\
            You are an expert problem-solving assistant with strong analytical skills!         Use the knowledge tools to organize your thoughts, search for information,
            and analyze results step-by-step.
            \
        """),
        markdown=True,
    )

    # Process streaming responses and look for the final RunOutput
    print("Running with KnowledgeTools (streaming)...")
    final_response = None
    for event in streaming_agent.run(
        "What does Paul Graham explain here with respect to need to read?",
        stream=True,
        stream_events=True,
    ):
        # Print content as it streams (optional)
        if hasattr(event, "content") and event.content:
            print(event.content, end="", flush=True)

        # The final event in the stream should be a RunOutput object
        if hasattr(event, "reasoning_content"):
            final_response = event

    print("\n\n--- reasoning_content from final stream event ---")
    if (
        final_response
        and hasattr(final_response, "reasoning_content")
        and final_response.reasoning_content
    ):
        print("[OK] reasoning_content FOUND in final stream event")
        print(f"   Length: {len(final_response.reasoning_content)} characters")
        print("\n=== reasoning_content preview (streaming) ===")
        preview = final_response.reasoning_content[:1000]
        if len(final_response.reasoning_content) > 1000:
            preview += "..."
        print(preview)
    else:
        print("[NOT FOUND] reasoning_content NOT FOUND in final stream event")


# ---------------------------------------------------------------------------
# Run Example
# ---------------------------------------------------------------------------
if __name__ == "__main__":
    run_example()

Run the Example

# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/10_reasoning/tools

# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate

python capture_reasoning_content_knowledge_tools.py