Personalized memory and session summaries with vLLM.
Prerequisites: 1.
Prerequisites: 1. Start a Postgres + pgvector container (helper script is provided): ./cookbook/scripts/run_pgvector.sh 2. Install dependencies: uv pip install sqlalchemy ‘psycopg[binary]’ pgvector 3. Run a vLLM server (any open model). Example with Phi-3: vllm serve microsoft/Phi-3-mini-128k-instruct \ —dtype float32 \ —enable-auto-tool-choice \ —tool-call-parser pythonic Then execute this script – it will remember facts you tell it and generate a summary.
Copy
Ask AI
"""Personalized memory and session summaries with vLLM.Prerequisites:1. Start a Postgres + pgvector container (helper script is provided): ./cookbook/scripts/run_pgvector.sh2. Install dependencies: uv pip install sqlalchemy 'psycopg[binary]' pgvector3. Run a vLLM server (any open model). Example with Phi-3: vllm serve microsoft/Phi-3-mini-128k-instruct \ --dtype float32 \ --enable-auto-tool-choice \ --tool-call-parser pythonicThen execute this script – it will remember facts you tell it and generate asummary."""from agno.agent import Agentfrom agno.db.postgres import PostgresDbfrom agno.models.vllm import VLLMfrom agno.utils.pprint import pprint# ---------------------------------------------------------------------------# Create Agent# ---------------------------------------------------------------------------# Change this if your Postgres container is running elsewhereDB_URL = "postgresql+psycopg://ai:ai@localhost:5532/ai"agent = Agent( model=VLLM(id="microsoft/Phi-3-mini-128k-instruct"), db=PostgresDb(db_url=DB_URL), update_memory_on_run=True, enable_session_summaries=True,)# -*- Share personal informationagent.print_response("My name is john billings?", stream=True)# -*- Print memories and summaryif agent.db: pprint(agent.get_user_memories(user_id="test_user")) pprint( agent.get_session(session_id="test_session").summary # type: ignore )# -*- Share personal informationagent.print_response("I live in nyc?", stream=True)# -*- Print memories and summaryif agent.db: pprint(agent.get_user_memories(user_id="test_user")) pprint( agent.get_session(session_id="test_session").summary # type: ignore )# -*- Share personal informationagent.print_response("I'm going to a concert tomorrow?", stream=True)# -*- Print memories and summaryif agent.db: pprint(agent.get_user_memories(user_id="test_user")) pprint( agent.get_session(session_id="test_session").summary # type: ignore )# Ask about the conversationagent.print_response( "What have we been talking about, do you know my name?", stream=True)# ---------------------------------------------------------------------------# Run Agent# ---------------------------------------------------------------------------if __name__ == "__main__": pass