Copy
Ask AI
"""
Example: Analyze files from AWS S3 using pre-signed URLs.
The Gemini API now supports external HTTPS URLs (up to 100MB).
Generate a pre-signed URL from S3 and pass it directly to Gemini.
Requirements:
- AWS credentials configured (via environment variables or ~/.aws/credentials)
- boto3 installed: uv pip install boto3
Supported formats: PDF, JSON, HTML, CSS, XML, images (PNG, JPEG, WebP, GIF)
Note: External URL support requires Gemini 3.x models (e.g., gemini-3-flash-preview).
Gemini 2.0 models do not support this feature.
"""
import boto3
from agno.agent import Agent
from agno.media import File
from agno.models.google import Gemini
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
# Generate a pre-signed URL for your S3 object
# Replace with your own bucket and key for private files
s3_client = boto3.client("s3")
presigned_url = s3_client.generate_presigned_url(
"get_object",
Params={
"Bucket": "agno-public", # Example: using Agno's public bucket
"Key": "recipes/ThaiRecipes.pdf",
},
ExpiresIn=3600, # URL valid for 1 hour
)
agent = Agent(
model=Gemini(id="gemini-3-flash-preview"),
markdown=True,
)
# Pass pre-signed URL directly - Gemini fetches the content
agent.print_response(
"What is this document about? Answer in one sentence.",
files=[
File(
url=presigned_url,
mime_type="application/pdf",
)
],
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
pass
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/90_models/google/gemini
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python s3_url_file_input.py