AWS Bedrock
Agent with Knowledge
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- xAI
AWS Bedrock
Agent with Knowledge
Code
cookbook/models/aws/bedrock/knowledge.py
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.aws import AwsBedrock
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
knowledge_base.load(recreate=True) # Comment out after first run
agent = Agent(
model=AwsBedrock(id="mistral.mistral-large-2402-v1:0"), markdown=True
knowledge=knowledge_base,
show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your AWS Credentials
export AWS_ACCESS_KEY_ID=***
export AWS_SECRET_ACCESS_KEY=***
export AWS_REGION=***
3
Install libraries
pip install -U boto3 sqlalchemy pgvector pypdf openai psycopg agno
4
Run PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
5
Run Agent
python cookbook/models/aws/bedrock/knowledge.py