Copy
Ask AI
"""
Pattern: Personal Assistant with Learning
=========================================
A personal assistant that learns about the user over time.
This pattern combines:
- User Profile: Preferences, routines, communication style
- Session Context: Current conversation state
- Entity Memory: Contacts, projects, places, events
The assistant becomes increasingly personalized without being asked.
See also: 01_basics/ for individual store examples.
"""
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import (
EntityMemoryConfig,
LearningMachine,
LearningMode,
SessionContextConfig,
UserProfileConfig,
)
from agno.models.openai import OpenAIResponses
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")
def create_personal_assistant(user_id: str, session_id: str) -> Agent:
"""Create a personal assistant for a specific user."""
return Agent(
model=OpenAIResponses(id="gpt-5.2"),
db=db,
instructions=(
"You are a helpful personal assistant. "
"Remember user preferences without being asked. "
"Keep track of important people and events in their life."
),
learning=LearningMachine(
user_profile=UserProfileConfig(
mode=LearningMode.ALWAYS,
),
session_context=SessionContextConfig(
enable_planning=True,
),
entity_memory=EntityMemoryConfig(
mode=LearningMode.ALWAYS,
namespace=f"user:{user_id}:personal",
),
),
user_id=user_id,
session_id=session_id,
markdown=True,
)
# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------
if __name__ == "__main__":
from rich.pretty import pprint
user_id = "[email protected]"
# Conversation 1: Introduction
print("\n" + "=" * 60)
print("CONVERSATION 1: Introduction")
print("=" * 60 + "\n")
agent = create_personal_assistant(user_id, "conv_1")
agent.print_response(
"Hi! I'm Alex Chen. I work as a product manager at Stripe. "
"I prefer concise responses. My sister Sarah is visiting next month.",
stream=True,
)
agent.learning_machine.user_profile_store.print(user_id=user_id)
print("\n--- Entities ---")
pprint(agent.learning_machine.entity_memory_store.search(query="sarah", limit=10))
# Conversation 2: New session (demonstrates memory)
print("\n" + "=" * 60)
print("CONVERSATION 2: New session (memory test)")
print("=" * 60 + "\n")
agent = create_personal_assistant(user_id, "conv_2")
agent.print_response(
"What do you remember about me and my sister?",
stream=True,
)
# Conversation 3: Planning something
print("\n" + "=" * 60)
print("CONVERSATION 3: Planning activity")
print("=" * 60 + "\n")
agent = create_personal_assistant(user_id, "conv_3")
agent.print_response(
"Help me plan activities for Sarah's visit. She likes hiking.",
stream=True,
)
agent.learning_machine.session_context_store.print(session_id="conv_3")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/07_patterns
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python personal_assistant.py