Copy
Ask AI
"""
From Topic
==========
Demonstrates loading topics from Wikipedia and Arxiv using sync and async operations.
"""
import asyncio
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.arxiv_reader import ArxivReader
from agno.knowledge.reader.wikipedia_reader import WikipediaReader
from agno.vectordb.pgvector import PgVector
# ---------------------------------------------------------------------------
# Setup
# ---------------------------------------------------------------------------
vector_db = PgVector(
table_name="vectors", db_url="postgresql+psycopg://ai:ai@localhost:5532/ai"
)
contents_db = PostgresDb(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
knowledge_table="knowledge_contents",
)
# ---------------------------------------------------------------------------
# Create Knowledge Base
# ---------------------------------------------------------------------------
def create_knowledge() -> Knowledge:
return Knowledge(
name="Basic SDK Knowledge Base",
description="Agno 2.0 Knowledge Implementation",
vector_db=vector_db,
contents_db=contents_db,
)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
def create_agent(knowledge: Knowledge) -> Agent:
return Agent(
name="My Agent",
description="Agno 2.0 Agent Implementation",
knowledge=knowledge,
search_knowledge=True,
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
def run_sync() -> None:
knowledge = create_knowledge()
knowledge.insert(
metadata={"user_tag": "Wikipedia content"},
topics=["Manchester United"],
reader=WikipediaReader(),
)
knowledge.insert(
metadata={"user_tag": "Arxiv content"},
topics=["Carbon Dioxide", "Oxygen"],
reader=ArxivReader(),
)
knowledge.insert_many(
topics=["Carbon Dioxide", "Nitrogen"],
reader=ArxivReader(),
skip_if_exists=True,
)
agent = create_agent(knowledge)
agent.print_response(
"What can you tell me about Manchester United?",
markdown=True,
)
async def run_async() -> None:
knowledge = create_knowledge()
await knowledge.ainsert(
metadata={"user_tag": "Wikipedia content"},
topics=["Manchester United"],
reader=WikipediaReader(),
)
await knowledge.ainsert(
metadata={"user_tag": "Arxiv content"},
topics=["Carbon Dioxide", "Oxygen"],
reader=ArxivReader(),
)
await knowledge.ainsert_many(
topics=["Carbon Dioxide", "Nitrogen"],
reader=ArxivReader(),
skip_if_exists=True,
)
agent = create_agent(knowledge)
agent.print_response(
"What can you tell me about Manchester United?",
markdown=True,
)
if __name__ == "__main__":
run_sync()
asyncio.run(run_async())
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/01_quickstart
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python 03_from_topic.py