Copy
Ask AI
import asyncio
import os
from agno.agent import Agent
from agno.db.postgres import AsyncPostgresDb
from agno.db.sqlite import AsyncSqliteDb
from agno.filters import IN
from agno.knowledge.knowledge import Knowledge
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.pgvector import PgVector
# Download all sample CVs and get their paths
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.DOCX
)
# Clean up old databases
if os.path.exists("tmp/knowledge_contents.db"):
os.remove("tmp/knowledge_contents.db")
db = AsyncSqliteDb(
db_file="tmp/knowledge_contents.db",
)
db = AsyncPostgresDb(
db_url="postgresql+psycopg_async://ai:ai@localhost:5532/ai",
knowledge_table="knowledge_contents",
)
# Initialize Vector Database
vector_db = PgVector(
table_name="CVs",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
)
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge = Knowledge(
name="Async Filtering",
vector_db=vector_db,
contents_db=db,
)
asyncio.run(
knowledge.ainsert_many(
[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
)
)
# Step 2: Query the knowledge base with different filter combinations
# ------------------------------------------------------------------------------
# Option 1: Filters on the Agent
# Initialize the Agent with the knowledge base and filters
agent = Agent(
db=db,
knowledge=knowledge,
search_knowledge=True,
)
if __name__ == "__main__":
# Query for Jordan Mitchell's experience and skills
asyncio.run(
agent.aprint_response(
"Search the knowledge base for the candidate's experience and skills",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
)
asyncio.run(
agent.aprint_response(
"Tell me about the candidate's experience and skills",
knowledge_filters=[(IN("user_id", ["jordan_mitchell"]))],
markdown=True,
)
)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/filters
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python async_filtering.py