Examples
- Examples
- Getting Started
- Agents
- Teams
- Workflows
- Applications
- Streamlit Apps
- Evals
Agent Concepts
- Reasoning
- Agents
- Models
- Teams
- Tools
- Multimodal
- RAG
- User Control Flows
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
- Observability
- Miscellaneous
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- XAI
- Vercel
Teams
Team with Reasoning Tools
This is a multi-agent team reasoning example with reasoning tools.
Enabling the reasoning option on the team leader helps optimize delegation and enhances multi-agent collaboration by selectively invoking deeper reasoning when required.
Code
cookbook/reasoning/teams/reasoning_finance_team.py
from textwrap import dedent
from agno.agent import Agent
from agno.models.anthropic import Claude
from agno.models.openai import OpenAIChat
from agno.team.team import Team
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.reasoning import ReasoningTools
from agno.tools.yfinance import YFinanceTools
web_agent = Agent(
name="Web Search Agent",
role="Handle web search requests",
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
instructions="Always include sources",
add_datetime_to_instructions=True,
)
finance_agent = Agent(
name="Finance Agent",
role="Handle financial data requests",
model=OpenAIChat(id="gpt-4o-mini"),
tools=[
YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)
],
instructions=[
"You are a financial data specialist. Provide concise and accurate data.",
"Use tables to display stock prices, fundamentals (P/E, Market Cap), and recommendations.",
"Clearly state the company name and ticker symbol.",
"Briefly summarize recent company-specific news if available.",
"Focus on delivering the requested financial data points clearly.",
],
add_datetime_to_instructions=True,
)
team_leader = Team(
name="Reasoning Finance Team Leader",
mode="coordinate",
model=Claude(id="claude-3-7-sonnet-latest"),
members=[
web_agent,
finance_agent,
],
tools=[ReasoningTools(add_instructions=True)],
instructions=[
"Only output the final answer, no other text.",
"Use tables to display data",
],
markdown=True,
show_members_responses=True,
enable_agentic_context=True,
add_datetime_to_instructions=True,
success_criteria="The team has successfully completed the task.",
)
def run_team(task: str):
team_leader.print_response(
task,
stream=True,
stream_intermediate_steps=True,
show_full_reasoning=True,
)
if __name__ == "__main__":
run_team(
dedent("""\
Analyze the impact of recent US tariffs on market performance across these key sectors:
- Steel & Aluminum: (X, NUE, AA)
- Technology Hardware: (AAPL, DELL, HPQ)
- Agricultural Products: (ADM, BG, INGR)
- Automotive: (F, GM, TSLA)
For each sector:
1. Compare stock performance before and after tariff implementation
2. Identify supply chain disruptions and cost impact percentages
3. Analyze companies' strategic responses (reshoring, price adjustments, supplier diversification)
4. Assess analyst outlook changes directly attributed to tariff policies
""")
)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your API key
export OPENAI_API_KEY=xxx
export ANTHROPIC_API_KEY=xxx
3
Install libraries
pip install -U openai anthropic agno
4
Run Example
python cookbook/reasoning/teams/reasoning_finance_team.py
Was this page helpful?
Assistant
Responses are generated using AI and may contain mistakes.