Async
Data Analyst
Examples
- Introduction
- Getting Started
- Agents
- Teams
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- xAI
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
Async
Data Analyst
Code
cookbook/agent_concepts/async/data_analyst.py
import asyncio
from textwrap import dedent
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckdb import DuckDbTools
duckdb_tools = DuckDbTools(
create_tables=False, export_tables=False, summarize_tables=False
)
duckdb_tools.create_table_from_path(
path="https://agno-public.s3.amazonaws.com/demo_data/IMDB-Movie-Data.csv",
table="movies",
)
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
tools=[duckdb_tools],
markdown=True,
show_tool_calls=True,
additional_context=dedent("""\
You have access to the following tables:
- movies: contains information about movies from IMDB.
"""),
)
asyncio.run(
agent.aprint_response("What is the average rating of movies?", stream=False)
)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Install libraries
pip install -U openai agno duckdb
3
Run Agent
python cookbook/agent_concepts/async/data_analyst.py