Getting Started
Research Workflow
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock Claude
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Together
- Vertex AI
- xAI
Getting Started
Research Workflow
This example shows how to build a sophisticated research workflow that combines: 🔍 Web search capabilities for finding relevant sources 📚 Content extraction and processing ✍️ Academic-style report generation 💾 Smart caching for improved performance
We’ve used the following tools as they’re available for free:
- DuckDuckGoTools: Searches the web for relevant articles
- Newspaper4kTools: Scrapes and processes article content
Example research topics to try:
- “What are the latest developments in quantum computing?”
- “Research the current state of artificial consciousness”
- “Analyze recent breakthroughs in fusion energy”
- “Investigate the environmental impact of space tourism”
- “Explore the latest findings in longevity research”
Code
research_workflow.py
import json
from textwrap import dedent
from typing import Dict, Iterator, Optional
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.storage.workflow.sqlite import SqliteWorkflowStorage
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.newspaper4k import Newspaper4kTools
from agno.utils.log import logger
from agno.utils.pprint import pprint_run_response
from agno.workflow import RunEvent, RunResponse, Workflow
from pydantic import BaseModel, Field
class Article(BaseModel):
title: str = Field(..., description="Title of the article.")
url: str = Field(..., description="Link to the article.")
summary: Optional[str] = Field(
..., description="Summary of the article if available."
)
class SearchResults(BaseModel):
articles: list[Article]
class ScrapedArticle(BaseModel):
title: str = Field(..., description="Title of the article.")
url: str = Field(..., description="Link to the article.")
summary: Optional[str] = Field(
..., description="Summary of the article if available."
)
content: Optional[str] = Field(
...,
description="Content of the in markdown format if available. Return None if the content is not available or does not make sense.",
)
class ResearchReportGenerator(Workflow):
description: str = dedent("""\
Generate comprehensive research reports that combine academic rigor
with engaging storytelling. This workflow orchestrates multiple AI agents to search, analyze,
and synthesize information from diverse sources into well-structured reports.
""")
web_searcher: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
description=dedent("""\
You are ResearchBot-X, an expert at discovering and evaluating academic and scientific sources.\
"""),
instructions=dedent("""\
You're a meticulous research assistant with expertise in source evaluation! 🔍
Search for 10-15 sources and identify the 5-7 most authoritative and relevant ones.
Prioritize:
- Peer-reviewed articles and academic publications
- Recent developments from reputable institutions
- Authoritative news sources and expert commentary
- Diverse perspectives from recognized experts
Avoid opinion pieces and non-authoritative sources.\
"""),
response_model=SearchResults,
structured_outputs=True,
)
article_scraper: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[Newspaper4kTools()],
description=dedent("""\
You are ContentBot-X, an expert at extracting and structuring academic content.\
"""),
instructions=dedent("""\
You're a precise content curator with attention to academic detail! đź“š
When processing content:
- Extract content from the article
- Preserve academic citations and references
- Maintain technical accuracy in terminology
- Structure content logically with clear sections
- Extract key findings and methodology details
- Handle paywalled content gracefully
Format everything in clean markdown for optimal readability.\
"""),
response_model=ScrapedArticle,
structured_outputs=True,
)
writer: Agent = Agent(
model=OpenAIChat(id="gpt-4o"),
description=dedent("""\
You are Professor X-2000, a distinguished AI research scientist combining academic rigor with engaging narrative style.\
"""),
instructions=dedent("""\
Channel the expertise of a world-class academic researcher!
🎯 Analysis Phase:
- Evaluate source credibility and relevance
- Cross-reference findings across sources
- Identify key themes and breakthroughs
đź’ˇ Synthesis Phase:
- Develop a coherent narrative framework
- Connect disparate findings
- Highlight contradictions or gaps
✍️ Writing Phase:
- Begin with an engaging executive summary, hook the reader
- Present complex ideas clearly
- Support all claims with citations
- Balance depth with accessibility
- Maintain academic tone while ensuring readability
- End with implications and future directions\
"""),
expected_output=dedent("""\
# {Compelling Academic Title}
## Executive Summary
{Concise overview of key findings and significance}
## Introduction
{Research context and background}
{Current state of the field}
## Methodology
{Search and analysis approach}
{Source evaluation criteria}
## Key Findings
{Major discoveries and developments}
{Supporting evidence and analysis}
{Contrasting viewpoints}
## Analysis
{Critical evaluation of findings}
{Integration of multiple perspectives}
{Identification of patterns and trends}
## Implications
{Academic and practical significance}
{Future research directions}
{Potential applications}
## Key Takeaways
- {Critical finding 1}
- {Critical finding 2}
- {Critical finding 3}
## References
{Properly formatted academic citations}
---
Report generated by Professor X-2000
Advanced Research Division
Date: {current_date}\
"""),
markdown=True,
)
def run(
self,
topic: str,
use_search_cache: bool = True,
use_scrape_cache: bool = True,
use_cached_report: bool = True,
) -> Iterator[RunResponse]:
"""
Generate a comprehensive news report on a given topic.
This function orchestrates a workflow to search for articles, scrape their content,
and generate a final report. It utilizes caching mechanisms to optimize performance.
Args:
topic (str): The topic for which to generate the news report.
use_search_cache (bool, optional): Whether to use cached search results. Defaults to True.
use_scrape_cache (bool, optional): Whether to use cached scraped articles. Defaults to True.
use_cached_report (bool, optional): Whether to return a previously generated report on the same topic. Defaults to False.
Returns:
Iterator[RunResponse]: An stream of objects containing the generated report or status information.
Steps:
1. Check for a cached report if use_cached_report is True.
2. Search the web for articles on the topic:
- Use cached search results if available and use_search_cache is True.
- Otherwise, perform a new web search.
3. Scrape the content of each article:
- Use cached scraped articles if available and use_scrape_cache is True.
- Scrape new articles that aren't in the cache.
4. Generate the final report using the scraped article contents.
The function utilizes the `session_state` to store and retrieve cached data.
"""
logger.info(f"Generating a report on: {topic}")
# Use the cached report if use_cached_report is True
if use_cached_report:
cached_report = self.get_cached_report(topic)
if cached_report:
yield RunResponse(
content=cached_report, event=RunEvent.workflow_completed
)
return
# Search the web for articles on the topic
search_results: Optional[SearchResults] = self.get_search_results(
topic, use_search_cache
)
# If no search_results are found for the topic, end the workflow
if search_results is None or len(search_results.articles) == 0:
yield RunResponse(
event=RunEvent.workflow_completed,
content=f"Sorry, could not find any articles on the topic: {topic}",
)
return
# Scrape the search results
scraped_articles: Dict[str, ScrapedArticle] = self.scrape_articles(
search_results, use_scrape_cache
)
# Write a research report
yield from self.write_research_report(topic, scraped_articles)
def get_cached_report(self, topic: str) -> Optional[str]:
logger.info("Checking if cached report exists")
return self.session_state.get("reports", {}).get(topic)
def add_report_to_cache(self, topic: str, report: str):
logger.info(f"Saving report for topic: {topic}")
self.session_state.setdefault("reports", {})
self.session_state["reports"][topic] = report
# Save the report to the storage
self.write_to_storage()
def get_cached_search_results(self, topic: str) -> Optional[SearchResults]:
logger.info("Checking if cached search results exist")
return self.session_state.get("search_results", {}).get(topic)
def add_search_results_to_cache(self, topic: str, search_results: SearchResults):
logger.info(f"Saving search results for topic: {topic}")
self.session_state.setdefault("search_results", {})
self.session_state["search_results"][topic] = search_results.model_dump()
# Save the search results to the storage
self.write_to_storage()
def get_cached_scraped_articles(
self, topic: str
) -> Optional[Dict[str, ScrapedArticle]]:
logger.info("Checking if cached scraped articles exist")
return self.session_state.get("scraped_articles", {}).get(topic)
def add_scraped_articles_to_cache(
self, topic: str, scraped_articles: Dict[str, ScrapedArticle]
):
logger.info(f"Saving scraped articles for topic: {topic}")
self.session_state.setdefault("scraped_articles", {})
self.session_state["scraped_articles"][topic] = scraped_articles
# Save the scraped articles to the storage
self.write_to_storage()
def get_search_results(
self, topic: str, use_search_cache: bool, num_attempts: int = 3
) -> Optional[SearchResults]:
# Get cached search_results from the session state if use_search_cache is True
if use_search_cache:
try:
search_results_from_cache = self.get_cached_search_results(topic)
if search_results_from_cache is not None:
search_results = SearchResults.model_validate(
search_results_from_cache
)
logger.info(
f"Found {len(search_results.articles)} articles in cache."
)
return search_results
except Exception as e:
logger.warning(f"Could not read search results from cache: {e}")
# If there are no cached search_results, use the web_searcher to find the latest articles
for attempt in range(num_attempts):
try:
searcher_response: RunResponse = self.web_searcher.run(topic)
if (
searcher_response is not None
and searcher_response.content is not None
and isinstance(searcher_response.content, SearchResults)
):
article_count = len(searcher_response.content.articles)
logger.info(
f"Found {article_count} articles on attempt {attempt + 1}"
)
# Cache the search results
self.add_search_results_to_cache(topic, searcher_response.content)
return searcher_response.content
else:
logger.warning(
f"Attempt {attempt + 1}/{num_attempts} failed: Invalid response type"
)
except Exception as e:
logger.warning(f"Attempt {attempt + 1}/{num_attempts} failed: {str(e)}")
logger.error(f"Failed to get search results after {num_attempts} attempts")
return None
def scrape_articles(
self, search_results: SearchResults, use_scrape_cache: bool
) -> Dict[str, ScrapedArticle]:
scraped_articles: Dict[str, ScrapedArticle] = {}
# Get cached scraped_articles from the session state if use_scrape_cache is True
if use_scrape_cache:
try:
scraped_articles_from_cache = self.get_cached_scraped_articles(topic)
if scraped_articles_from_cache is not None:
scraped_articles = scraped_articles_from_cache
logger.info(
f"Found {len(scraped_articles)} scraped articles in cache."
)
return scraped_articles
except Exception as e:
logger.warning(f"Could not read scraped articles from cache: {e}")
# Scrape the articles that are not in the cache
for article in search_results.articles:
if article.url in scraped_articles:
logger.info(f"Found scraped article in cache: {article.url}")
continue
article_scraper_response: RunResponse = self.article_scraper.run(
article.url
)
if (
article_scraper_response is not None
and article_scraper_response.content is not None
and isinstance(article_scraper_response.content, ScrapedArticle)
):
scraped_articles[article_scraper_response.content.url] = (
article_scraper_response.content
)
logger.info(f"Scraped article: {article_scraper_response.content.url}")
# Save the scraped articles in the session state
self.add_scraped_articles_to_cache(topic, scraped_articles)
return scraped_articles
def write_research_report(
self, topic: str, scraped_articles: Dict[str, ScrapedArticle]
) -> Iterator[RunResponse]:
logger.info("Writing research report")
# Prepare the input for the writer
writer_input = {
"topic": topic,
"articles": [v.model_dump() for v in scraped_articles.values()],
}
# Run the writer and yield the response
yield from self.writer.run(json.dumps(writer_input, indent=4), stream=True)
# Save the research report in the cache
self.add_report_to_cache(topic, self.writer.run_response.content)
# Run the workflow if the script is executed directly
if __name__ == "__main__":
from rich.prompt import Prompt
# Example research topics
example_topics = [
"quantum computing breakthroughs 2024",
"artificial consciousness research",
"fusion energy developments",
"space tourism environmental impact",
"longevity research advances",
]
topics_str = "\n".join(
f"{i + 1}. {topic}" for i, topic in enumerate(example_topics)
)
print(f"\nđź“š Example Research Topics:\n{topics_str}\n")
# Get topic from user
topic = Prompt.ask(
"[bold]Enter a research topic[/bold]\n✨",
default="quantum computing breakthroughs 2024",
)
# Convert the topic to a URL-safe string for use in session_id
url_safe_topic = topic.lower().replace(" ", "-")
# Initialize the news report generator workflow
generate_research_report = ResearchReportGenerator(
session_id=f"generate-report-on-{url_safe_topic}",
storage=SqliteWorkflowStorage(
table_name="generate_research_report_workflow",
db_file="tmp/workflows.db",
),
)
# Execute the workflow with caching enabled
report_stream: Iterator[RunResponse] = generate_research_report.run(
topic=topic,
use_search_cache=True,
use_scrape_cache=True,
use_cached_report=True,
)
# Print the response
pprint_run_response(report_stream, markdown=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Install libraries
openai duckduckgo-search newspaper4k lxml_html_clean sqlalchemy agno
3
Run the workflow
python research_workflow.py