Tools
Financial Datasets Tools
Examples
- Introduction
- Getting Started
- Agents
- Teams
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- DuckDuckGo Search
- Calculator
- Airflow Tools
- Apify Tools
- ArXiv Tools
- AWS Lambda Tools
- Baidu Search Tools
- Cal.com Tools
- Composio Tools
- Confluence Tools
- Crawl4ai Tools
- CSV Tools
- DALL-E Tools
- Desi Vocal Tools
- Discord Tools
- Docker Tools
- DuckDB Tools
- Email Tools
- E2B Code Execution
- Exa Tools
- Fal Tools
- File Tools
- Financial Datasets Tools
- Firecrawl Tools
- Giphy Tools
- GitHub Tools
- Google Calendar Tools
- Google Maps Tools
- Google Search Tools
- Hacker News Tools
- Jina Reader Tools
- Jira Tools
- Linear Tools
- Luma Labs Tools
- MLX Transcribe Tools
- Models Labs Tools
- Newspaper Tools
- Newspaper4k Tools
- OpenBB Tools
- Pandas Tools
- Postgres Tools
- PubMed Tools
- Python Tools
- Replicate Tools
- Resend Tools
- SearxNG Tools
- SerpAPI Tools
- Shell Tools
- Slack Tools
- Sleep Tools
- Spider Tools
- SQL Tools
- Tavily Tools
- Todoist Tools
- Twilio Tools
- Webex Tools
- Website Tools
- Wikipedia Tools
- X (Twitter) Tools
- YFinance Tools
- YouTube Tools
- Zendesk Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- xAI
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
Tools
Financial Datasets Tools
Code
cookbook/tools/financial_datasets_tools.py
from agno.agent import Agent
from agno.tools.financial_datasets import FinancialDatasetsTools
agent = Agent(
name="Financial Data Agent",
tools=[
FinancialDatasetsTools(), # For accessing financial data
],
description="You are a financial data specialist that helps analyze financial information for stocks and cryptocurrencies.",
instructions=[
"When given a financial query:",
"1. Use appropriate Financial Datasets methods based on the query type",
"2. Format financial data clearly and highlight key metrics",
"3. For financial statements, compare important metrics with previous periods when relevant",
"4. Calculate growth rates and trends when appropriate",
"5. Handle errors gracefully and provide meaningful feedback",
],
markdown=True,
show_tool_calls=True,
)
# Example 1: Financial Statements
print("\n=== Income Statement Example ===")
agent.print_response(
"Get the most recent income statement for AAPL and highlight key metrics",
stream=True,
)
# Example 2: Balance Sheet Analysis
print("\n=== Balance Sheet Analysis Example ===")
agent.print_response(
"Analyze the balance sheets for MSFT over the last 3 years. Focus on debt-to-equity ratio and cash position.",
stream=True,
)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your API credentials
export FINANCIAL_DATASETS_API_KEY=xxx
3
Install libraries
pip install -U agno
4
Run Agent
python cookbook/tools/financial_datasets_tools.py