Tools
Airflow Tools
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- DuckDuckGo Search
- Calculator
- Airflow Tools
- Apify Tools
- ArXiv Tools
- AWS Lambda Tools
- Baidu Search Tools
- Cal.com Tools
- Composio Tools
- Confluence Tools
- Crawl4ai Tools
- CSV Tools
- DALL-E Tools
- Desi Vocal Tools
- Discord Tools
- DuckDB Tools
- Email Tools
- Exa Tools
- Fal Tools
- File Tools
- Firecrawl Tools
- Giphy Tools
- GitHub Tools
- Google Calendar Tools
- Google Search Tools
- Hacker News Tools
- Jina Reader Tools
- Jira Tools
- Linear Tools
- Luma Labs Tools
- MLX Transcribe Tools
- Models Labs Tools
- Newspaper Tools
- Newspaper4k Tools
- OpenBB Tools
- Pandas Tools
- Postgres Tools
- PubMed Tools
- Python Tools
- Replicate Tools
- Resend Tools
- SearxNG Tools
- SerpAPI Tools
- Shell Tools
- Slack Tools
- Sleep Tools
- Spider Tools
- SQL Tools
- Tavily Tools
- Twilio Tools
- Twitter Tools
- Website Tools
- Wikipedia Tools
- YFinance Tools
- YouTube Tools
- Zendesk Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock Claude
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Together
- Vertex AI
- xAI
Tools
Airflow Tools
Code
cookbook/agent_concepts/tools/airflow_tools.py
from agno.agent import Agent
from agno.tools.airflow import AirflowTools
agent = Agent(
tools=[AirflowTools(dags_dir="tmp/dags", save_dag=True, read_dag=True)],
show_tool_calls=True,
markdown=True,
)
dag_content = """
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2024, 1, 1),
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
# Using 'schedule' instead of deprecated 'schedule_interval'
with DAG(
'example_dag',
default_args=default_args,
description='A simple example DAG',
schedule='@daily', # Changed from schedule_interval
catchup=False
) as dag:
def print_hello():
print("Hello from Airflow!")
return "Hello task completed"
task = PythonOperator(
task_id='hello_task',
python_callable=print_hello,
dag=dag,
)
"""
agent.run(f"Save this DAG file as 'example_dag.py': {dag_content}")
agent.print_response("Read the contents of 'example_dag.py'")
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Install libraries
pip install -U apache-airflow agno
3
Run Agent