Code

from agno.agent import Agent
from agno.embedder.openai import OpenAIEmbedder
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.openai import OpenAIChat
from agno.vectordb.pgvector import PgVector, SearchType

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# Create a knowledge base of PDFs from URLs
knowledge_base = PDFUrlKnowledgeBase(
    urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
    # Use PgVector as the vector database and store embeddings in the `ai.recipes` table
    vector_db=PgVector(
        table_name="recipes",
        db_url=db_url,
        search_type=SearchType.hybrid,
        embedder=OpenAIEmbedder(id="text-embedding-3-small"),
    ),
)
# Load the knowledge base: Comment after first run as the knowledge base is already loaded
knowledge_base.load(upsert=True)

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    knowledge=knowledge_base,
    # Add a tool to search the knowledge base which enables agentic RAG.
    # This is enabled by default when `knowledge` is provided to the Agent.
    search_knowledge=True,
    show_tool_calls=True,
    markdown=True,
)
agent.print_response(
    "How do I make chicken and galangal in coconut milk soup", stream=True
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.

2

Set your API key

export OPENAI_API_KEY=xxx
3

Install libraries

pip install -U openai sqlalchemy 'psycopg[binary]' pgvector agno
4

Run PgVector

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agnohq/pgvector:16
5

Run Agent