Hybrid Search
Pinecone Hybrid Search
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock Claude
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Together
- Vertex AI
- xAI
Hybrid Search
Pinecone Hybrid Search
Code
import os
from typing import Optional
import nltk # type: ignore
import typer
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.pineconedb import PineconeDb
from rich.prompt import Prompt
nltk.download("punkt")
nltk.download("punkt_tab")
api_key = os.getenv("PINECONE_API_KEY")
index_name = "thai-recipe-hybrid-search"
vector_db = PineconeDb(
name=index_name,
dimension=1536,
metric="cosine",
spec={"serverless": {"cloud": "aws", "region": "us-east-1"}},
api_key=api_key,
use_hybrid_search=True,
hybrid_alpha=0.5,
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
def pinecone_agent(user: str = "user"):
agent = Agent(
user_id=user,
knowledge=knowledge_base,
search_knowledge=True,
show_tool_calls=True,
)
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
# Comment out after first run
knowledge_base.load(recreate=False, upsert=True)
typer.run(pinecone_agent)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Set your API keys
export OPENAI_API_KEY=xxx
export PINECONE_API_KEY=xxx
3
Install libraries
pip install -U pinecone pinecone-text pypdf openai agno
4
Run Agent