from agno.agent import AgentKnowledge
from agno.embedder.azure_openai import AzureOpenAIEmbedder
from agno.vectordb.pgvector import PgVector
embeddings = AzureOpenAIEmbedder().get_embedding(
"The quick brown fox jumps over the lazy dog."
)
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="azure_openai_embeddings",
embedder=AzureOpenAIEmbedder(),
),
num_documents=2,
)
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
Set your API key
export AZURE_EMBEDDER_OPENAI_API_KEY=xxx
export AZURE_EMBEDDER_OPENAI_ENDPOINT=xxx
export AZURE_EMBEDDER_DEPLOYMENT=xxx
Install libraries
pip install -U sqlalchemy 'psycopg[binary]' pgvector openai agno
Run PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
Run Agent
python cookbook/agent_concepts/knowledge/embedders/azure_embedder.py
Was this page helpful?